# **TOPIC 1: FUNCTIONS**

## 1.1 What is Calculus?

"Calculus is the study of how things change. It provides a framework for modeling systems in which there is change, and a way to deduce the predictions of such models." (Calculus for Beginners and Artists by Daniel Kleitman)

Calculus is Divided into Two Categories **Differential Calculus** Integral Calculus (Rate of Change) (Accumulation) **Fundamental Theorem of Calculus** (Connects Differential and Integral Calculus) © mathscoop.com

Go to YouTube to view the video(s) "What is calculus?"

## 1.2 Numbers and Intervals

### **Real numbers**

**Natural numbers** (N) : 1, 2,3,4, ...

**Integers** (I or Z) : . . . , -4, -3, -2, -1, 0, 1, 2, 3, 4, . . .

Natural numbers are integers too.

**Rational numbers** (Q) : Any number that can be written as an integer divided by a non-zero integer. Integers are rational numbers too.

Some examples of rational numbers are:  $\frac{3}{4}, \frac{14}{6}, 32 = \frac{32}{1}, 0.23 = \frac{23}{100}, -\frac{5}{3} = \frac{-5}{3} = \frac{5}{-3}$ 

### **Real numbers** (R):

Some examples of **irrational** numbers are:  $\sqrt{2}, \sqrt{15}, 1 + \sqrt{3}, \sqrt[3]{10}, \pi, e, \sin 15^\circ$ 

The rational and irrational numbers together comprise what is called the *real number system*. The rational numbers and irrational numbers are all real numbers.

The real numbers can be represented by points on a line.



Numbers of the form a + bi where  $i = \sqrt{-1}$ .

Note that every real number *a* is also a complex number because it can be written as a = a + 0i.



### **Intervals**

| Notation                                                                                                                            | Set description                                                                                                                                                                                                                                  | Pic                                                                                                                                                                                                                                                                                                     | ture                                  |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| $(a, b)$ { $[a, b]$ { $[a, b)$ { $(a, b]$ { $(a, \infty)$ { $[a, \infty)$ { $(-\infty, b)$ { $(-\infty, b]$ { $(-\infty, \infty)$ [ | $\begin{aligned} x &  a < x < b \\ x &  a \leq x \leq b \\ x &  a \leq x < b \\ x &  a \leq x < b \\ x &  a < x \leq b \\ x &  x > a \\ x &  x > a \\ x &  x < b \\ x &  x \leq b \\ \mathbb{R} \text{ (set of all real numbers)} \end{aligned}$ | $ \begin{array}{c} \circ \\ a \\ \bullet \\ \bullet \\ a \\ \bullet \\ \bullet$ | b $b$ $b$ $b$ $b$ $b$ $b$ $b$ $b$ $b$ |

Here *a* and *b* are real numbers with a < b.

[Some **terms**: finite interval, infinite interval, endpoints (boundary points), open, closed, half-open.]

Although the symbol  $\infty$  ("infinity") is used in some of the notations, this does not mean that  $\infty$  is a number.  $\infty$  is NOT a real number.

For example, the notation  $(a,\infty)$  stands for the set of all numbers that are greater than a, so the symbol  $\infty$  simply indicates that the interval extends indefinitely far in the positive direction.

## 1.3 Functions

When the value of one variable quantity, say y, depends on the value of another variable quantity, which we might call x. We say that "y is a function of x" and write this symbolically as

$$= f(x)$$
 ("y equals f of x").

In this notation, the symbol *f* represents the function, the letter *x* is the **independent variable** representing the input value of *f*, and *y* is the **dependent variable** or output value of f(x).



Seeing function as a machine.

**DEFINITION.** A function f from a set D to a set E is a rule that assigns to each element  $x \in D$  a unique (exactly one) element  $f(x) \in E$ .

The element f(x) is called the value of f at x, and is read "f of x."



We usually consider functions for which the sets D and E are sets of real numbers. The set D is called the **domain of** f while the set E is the **codomain of** f; the **range of** f is the set of all possible values of f(x) as x varies throughout the domain.

The **graph of** f is the set of ordered pairs  $\{(x, f(x)) | x \in D\}$ (Notice that these are input-output pairs.) In other words, the graph of consists of all points (x, y) in the coordinate plane such that y = f(x) and x is in the domain of f.

Four possible ways of representing a function:

| • | Verbally | (Describe in words) |
|---|----------|---------------------|
|---|----------|---------------------|

- Numerically (Use a table of values)
- Graphically/Visually (Use a graph)
- Algebraically (Use formula(s) or algebraic expression(s))

To specify a function f you must

- (1) give a rule which tells you how to compute the value f(x) of the function for a given real number x, and
- (2) say for which real numbers x the rule may be applied.

## **Examples**:

(i)  $f(x) = x^2$ 

Values of f(-2), f(0), f(3)? What is the domain of f? Graph of f?

(ii)  $g(x) = \sqrt{x}$ 

Values of g(-2), g(0), g(3)? What is the domain of g? Graph of g?

When we define a function y = f(x) with a formula and the domain is not stated explicitly or restricted by context, the domain is assumed to be the largest set of real *x*-values for which the formula gives real *y*-values, the so-called **natural domain**.

(iii)  $h(x) = x^2$ , for  $x \in [-2,2]$ 

Values of h(-2), h(0), h(3)? What is the domain of h? Graph of h?

Find the domain of each function. Write the domain in the form of an interval or union of intervals.

| $f(x) = \frac{1}{x}$        |  |
|-----------------------------|--|
| $g(x) = \sqrt{9 - x}$       |  |
| $h(x) = \sqrt{4 - x^2}$     |  |
| $m(x) = \sqrt{x+3}$         |  |
| $n(x) = \frac{1}{x^2 - 2x}$ |  |
| $p(x) = \frac{x}{ x }$      |  |

**Graphing a function**. You get the graph of a function f by drawing all points whose coordinates are (x, y) where x must be in the domain of f and y = f(x).

**Graph** of  $f = \{(x, f(x)) \mid x \in D\}$ 

It consists of all points in the coordinate plane such that x is in the domain of f and y = f(x).



## **The Vertical Line Test**

Given a curve in the xy-plane, it is the graph of a function of x if and only if no vertical line intersects the curve more than once.

## **Examples**:





## **Piecewise Defined Functions**

**DEFINITION.** A **piecewise defined function** is a function which is defined symbolically using two or more formulas.

**Examples:** Sketch the graph of each function

$$f(x) = \begin{cases} x^2 & \text{if } x < 2\\ 1+x & \text{if } x \ge 2 \end{cases}$$
$$g(x) = \begin{cases} x & \text{if } 0 \le x \le 2\\ 4-x & \text{if } 2 < x \le 4\\ 0 & \text{if } x > 4 \end{cases}$$

 $h(x) = \begin{cases} x & \text{if } 0 \le x \le 2\\ 4 - x & \text{if } 2 < x \le 4\\ 0 & \text{if } x \ge 4 \end{cases}$  (Is this a function?)

$$h(x) = \begin{cases} x & \text{if } 0 \le x \le 2\\ 4-x & \text{if } 2 < x \le 4\\ 2 & \text{if } x \ge 4 \end{cases}$$
 [Explain why this is NOT a function?]

## **Even Functions and Odd Functions: Symmetry**

## Definitions

A function y = f(x) is an even function of x if f(-x) = f(x)odd function of x if f(-x) = -f(x)for every x in the domain of f.





The graph of an **even** function is **symmetric about the y-axis**. The graph of an **odd** function is **symmetric about the origin**.

#### **Examples**

- (i)  $f(x) = 1 x^2$ :  $f(-x) = 1 (-x)^2 = 1 x^2 = f(x)$ . Therefore f is an even function.
- (ii)  $g(x) = x^3 + x$ :  $g(-x) = (-x)^3 + (-x) = -x^3 x = -(x^3 + x) = -g(x)$ Conclusion?

(iii) 
$$h(x) = x - x^2$$
:  $h(-x) = (-x) - (-x)^2 = -x - x^2$   
 $-h(x) = -(x - x^2) = -x + x^2$ 

Since  $h(x) \neq h(-x)$ , *h* is not an even function. Since  $h(-x) \neq -h(-x)$ , *h* is not an odd function. We conclude that *h* is neither even nor odd.

### **Increasing and Decreasing Functions**

A function f is said to be **increasing on an interval** I if  $f(x_1) < f(x_2)$  whenever  $x_1 < x_2$  in I. A function f is said to be **decreasing on an interval** I if  $f(x_1) > f(x_2)$  whenever  $x_1 < x_2$  in I.

Example

**Definitions** 



Given the graphs of *f* and *g*,(i) on what interval is *f* increasing?(ii) on what interval is *g* decreasing?

## **Common functions:**

Constant functions Linear functions Power functions Polynomials Rational functions Algebraic functions - Any function constructed from polynomials using algebraic operations (addition, subtraction, multiplication, division, and taking roots) Trigonometric functions Exponential functions Logarithmic functions

#### **Combining functions**

Functions can be added, subtracted, multiplied, and divided (except where the denominator is zero) to produce new functions.

If f and g are functions, we define functions f + g, f - g and fg by the formulas

functions f + g, f - g and fg by the formulas (f + g)(x) = f(x) + g(x) (f - g)(x) = f(x) - g(x)(fg)(x) = f(x)g(x) for  $x \in D(f) \cap D(g)$ .

Notice that the + sign on the left-hand side of the first equation represents the operation of addition of *functions*, whereas the + on the right-hand side of the equation means addition of the real numbers f(x) and g(x).

We can also define the function f/g or  $\frac{f}{g}$  by the formula

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
 for  $x \in D(f) \cap D(g)$  with  $g(x) \neq 0$ .

Functions can also be multiplied by constants:

If c is a real number, the function cf is defined by (cf)(x) = cf(x) for  $x \in D(f)$ .



## Another way of combining functions

**DEFINITION.** If f and g are functions, the **composite function**  $f \circ g$  ("f composed with g", also called the **composition** of f and g) is defined by

$$(f \circ g)(x) = f(g(x))$$

The domain of  $f \circ g$  is the set of all x in the domain of g such that g(x) is in the domain of f. In other words,  $(f \circ g)(x)$  is defined whenever both g(x) and f(g(x)) are defined.



### **Examples**:

If  $f(x) = \sqrt{x}$  and  $g(x) = \sqrt{3-x}$ , find each function and decide on the domain.

[Note that  $D(f) = [0, \infty)$  and  $D(g) = (-\infty, 3]$ .]

(a) 
$$f \circ g$$
 (b)  $g \circ f$  (c)  $f \circ f$  (d)  $g \circ g$ 

Solution.

(a) 
$$(f \circ g)(x) = f(g(x)) = f(\sqrt{3-x}) = \sqrt{\sqrt{3-x}} = \sqrt[4]{3-x}$$

The domain of  $f \circ g$  is  $\{x \mid 3 - x \ge 0\} = \{x \mid x \le 3\} = (-\infty, 3]$ 

(b)  $(g \circ f)(x) = g(f(x)) = g(\sqrt{x}) = \sqrt{3 - \sqrt{x}}$ 

For  $\sqrt{x}$  to be defined, we need  $x \ge 0$ . For  $\sqrt{3-\sqrt{x}}$  to be defined, we need  $3-\sqrt{x} \ge 0$ , i.e.,  $\sqrt{x} \le 3$ , or  $0 \le x \le 9$ .

Thus the domain of  $g \circ f$  is [0, 9].

**<u>NOTE</u>**: From the above example, you can see that, in general,  $f \circ g \neq g \circ f$ . Remember, the notation  $f \circ g$  means that the function g is applied first and then f is applied second.

## 1.4 Transformations of Functions

### Shifting, scaling and reflecting a graph of a function

[**DO NOT memorize the following tables**. We shall discuss in class how to remember all the ideas in the following tables without memorizing. Just memorizing will not help; you will get confused. The ideas are remembered through understanding. Whenever needed, the appropriate idea will surface through understanding. ]

| Vertical shift   | To obtain the graph of | Shift/translate the graph of  |                   |
|------------------|------------------------|-------------------------------|-------------------|
|                  | y = f(x) + c           | y = f(x) a distance of $c$    |                   |
|                  |                        | units upward                  |                   |
|                  |                        |                               | $\mathbf{\nabla}$ |
|                  |                        | (Negative <i>c</i> would mean |                   |
|                  |                        | "  c   units downward.")      | r                 |
| Horizontal shift | To obtain the graph of | Shift/translate the graph of  |                   |
|                  | y = f(x+c)             | y = f(x) a distance of $c$    |                   |
|                  |                        | units to the left.            |                   |
|                  |                        | (Negative <i>c</i> would mean |                   |
|                  |                        | " $ c $ units to the right.") |                   |
|                  |                        |                               |                   |

Examples



Discuss how the graph of y = |x - 2| - 1 can be obtained from the graph of y = |x|.



| Vertical Scaling | To obtain the graph of | Rescale the graph of                                                                   |
|------------------|------------------------|----------------------------------------------------------------------------------------|
| (c > 0)          | y = cf(x)              | y = f(x) vertically by a                                                               |
|                  |                        | factor of <i>c</i> .                                                                   |
|                  |                        | (c > 1 would mean                                                                      |
|                  |                        | <b>stretching</b> while $c < 1$                                                        |
|                  |                        | would mean <b>shrinking</b> .)                                                         |
| Horizontal       | To obtain the graph of | Rescale the graph of                                                                   |
| Scaling          | y = f(cx)              | y = f(x) horizontally by a                                                             |
| ( <i>c</i> > 0)  |                        | factor of <i>c</i> .                                                                   |
|                  |                        | (c > 1 would mean<br><b>shrinking</b> while $c < 1$<br>would mean <b>stretching</b> .) |

# Vertical and Horizontal Scaling and Reflecting

# Examples



| <b>Reflecting across</b><br>the <i>x</i> -axis | To obtain the graph of $y = -f(x)$ | Reflect the graph of $y = f(x)$ across the <i>x</i> -axis. |
|------------------------------------------------|------------------------------------|------------------------------------------------------------|
| <b>Reflecting across</b><br>the y-axis         | To obtain the graph of $y = f(-x)$ | Reflect the graph of $y = f(x)$ across the y-axis.         |

### Example

Discuss how the graph of  $y = 1 - \sin x$  can be obtained from the graph of  $y = \sin x$ .



Another transformation of some interest is taking the absolute value of a function. Given the graph of y = f(x), how do we obtain the graph of y = |f(x)|?

Recall that  $|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$ . Then  $|f(x)| = \begin{cases} f(x) & \text{if } f(x) \ge 0 \\ -f(x) & \text{if } f(x) < 0 \end{cases}$ 

For the graph of y = |f(x)|, the part of the graph of y = f(x) that lies above the x-axis remains the same, and the part that lies below the x-axis is reflect about the x-axis.

Sketch the graph of the function  $y = |x^2 - 1|$ .



(nby, Jun 2017)